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LETTER TO THE EDITOR 

The monomerdimer model of heterogeneous catalysis with a 
finite reaction rate 

J Kohler and D ben-Avrahamt 
Interdisziplinires Zentmm fiir Wissenschaftliches Rechnen (IWR), Univenitit Heidelberg, 
6900 Heidelberg. Federal Republic of Germany 

Received 5 September 1991 

Abstract. We study the Ziff-Gulari-Barshad monomer-dimer model for catalysis with finite 
reaction and adsorption rates. A recent paper shows numerical evidence for the existence 
of a tricritical point at a reaction prababilityvalue r,==O.14, below which there is no steady 
state reactive phase, but its ad hoc mean-field approach f d s  lo reproduce this result. Our 
numerical simulations on significantly bigger lattices and using the more sensitive technique 
of conrmnc eooeroge, show the absence of a tricritical point w e n  for r as small as 0.01. We 
also conduct a mean-field analysis bared on Dickman's cluster approximation, a self- 
contained method which does not require external parameters. It too supports our claim 
inai mere 1s no Ericnricai puinr in m e  monomer-dimer modei wiih iiniie reaciion nie. . L - . _ L ~ - ~  !~ .~ ~ . _ . ~ ~ .  !~ _ . ~ ~  

In heterogeneous catalysis processes, reactants undergo a chemical reaction which is 
facilitated by their adsorption onto a catalytic surface. These systems have been 
traditionally studied using classical mean-field rate equations for the global concentra- 
tions of the reactants in question [1-3]. Lately, it has been realized that some important 
kinetic features arise from the fluctuations in the coverage concentrations of the catalytic 
surface in microscopic scales. These fluctuations may strongly interact and correlate 
with each other leading to collective kinetic behaviour which cannot be predicted by 
the classical approach. Lattice models which describe the process by a set of microscopic 
rules have dealt with the problem successfully. 

The monomer-dimer lattice model for heterogeneous catalysis was introduced by 

platinum surface [4]. Their model consists of two elementary steps, namely reaction 
and adsorption, which take place with probability r or s = 1 - r, respectively. In an 
adsorption step, a deposition attempt is made either with a CO monomer (B) with 
probability p, or with an O2 dimer (AZ) with probability q = 1 -p .  The deposition 
attempt takes place at a randomly chosen lattice site on the surface. If the chosen site 
is empty and the impinging particle is a monomer, adsorption takes place. The 
adsorption of a dimer takes place only if  in addition a randomly chosen nearest 
neighbour of the selected site is also empty. In a reaction step, neighbouring CO (B) 
and 0 (A) molecules bond to form carbon dioxide CO2 (AB) which immediately 
desorbs from the lattice leaving behind two vacant sites. These steps can be symbolically 
represented by 

B+*+B* ( l o )  
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A2 f 2 *  + 2A* 
A*+ B* + AB+2* 

t Permanent address: Physics Department, Clarkson University, Potsdam, NY 13699, USA. 
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where * denotes an active (empty) lattice site and A* and B* denote chemisorbed 
particles. 

Let k,  , k2 and k, be the rates of the processes (1  a ), (1  b )  and ( 1  e ) ,  respectively. In 
terms of these rates, p ,  q and the reaction probability r are given by p = k , / ( k ,  + k2),  
q =  k 2 / ( k l + k 2 )  and r = k , / ( k , + k 2 + k , ) .  In the adsorption-limited case (k, , , , /k.+O, 
i.e. r +  1) originally considered by ZCB [4], there is a reactive phase for pI < p < p 2 ,  
where the concentration of monomers, dimers and the production rate of AB is constant. 
For p > p 2 ( p  < p , )  the lattice poisons with monomers (dimers). 

In a recent paper [SI Considine, Takayasu and Redner (CTR) consider the ZCB 

model with a finite reaction rate. They first observe that in the reaction-limited case 
(k,/k,(2,+0,i.e. r + 0 )  the kinetics of the process can be solved exactly, showing a 
direct transition from the monomer-poisoned to the dimer-poisoned phase at p = 0.2. 
There is no reactive steady state phase for r=O. Their numerical simulations on a 
3 2 x 3 2  square iattice suggest that at r=rc=0.i4=t0.02 there is a tricriticai point; a 
reactive phase exists only for r >  r,. However, their mean-field analysis predicts a 
reactive phase which becomes narrower with decreasing r but which nevertheless 
persists down to r=O. 

In this letter we study the ZGB model with finite reaction rate in an attempt to 
resolve the question of the tricritical point. We extend the simulations of CTR to larger 

be a tedious, time-consuming process. Fluctuations are typically large and even fairly 
big lattices poison because of their finite size. We tackle these problems by conducting 
simulations at a constant lattice coverage [6] .  The mean-field analysis of CTR predicts 
no tricritical point, but it contains free parameters that are adjusted to fit the simulation 
data. We write down mean-field equations based on Dickman's cluster method [7] 

method is systematic and self-contained, needing no external fitting of parameters, 
and in this sense it is complementary to the CTR approach. Both our simulations and 
mean-field results show no tricritical point at finite r. 

For the actual simulation or process ( l ) ,  the catalytic surface is modelled by a 
square lattice whose sites may be either empty (active) or occupied by point-like A or 

simulation algorithm. 
To speed up simulation, we keep a list of empty sites. Adsorption events are 

attempted only to sites in the list, thus avoiding trials that are sure to be rejected. After 
each adsorption attempt time is incremented by l / N E ,  where N E  denotes the number 
of empty lattice sites. For the reaction step, we use a second list where we keep track 
of all AB-pairs. Choosing a pair of sites from this list, rather than from all possible 
pairs on the lattice, a reaction is guaranteed. This requires that we replace the reaction 
probability r by an effective probability 

500 x j 0 0  iaiiices, Tne iiuiiiencai sea&, for a reaciivz pkdse ai srr,aii values uf can 
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where NAD denotes the number of AB pairs (notice that in an N-sites lattice there are 
2N possible pairs). This is simply the ratio of the rate of successful reaction attempts 
to the total rate of successful event, reaction and adsorption, in the original process 
(without restricting attempts to sites on the special lists). After each reaction event the 
time counter is incremented by 2/ N A B .  
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Using the simulation scheme above we reproduce the CTR results. For small reaction 
probabilities r, there appear to be no reactive phase and the lattice invariably poisons 
with either of the two species. The poisoning time near the transition from the monomer- 
to the dimer-poisoned phase increases algebraically with the size of the lattice N. The 
poisoning time near a reactive phase is known to grow exponentially with N [SI, 
hence, one is tempted to conclude that there are no reactive states for small r and that 
a tricritical point must exist. 

However, from the CTR simulation results as well as  from ours, we observe that if 
a reactive phase existed at r=0 .1 ,  say, its width would be expected to be Ap=O.OOl. 
To resolve such fine details in the adsorption probability, a rate of adsorption events 
much larger than l / A p  = 1000 is required. But the number of adsorption events per 
unit time is NE= x,N, where xE is the concentration of empty sites. One can estimate 
in our case, from the data near the first-order transition, that xE=O.O1. Hence, a lattice 

largest 300 x 300 lattices may not be large enough. 
As an altemative to huge lattices we employ the constant coverage (cc) simulation 

algorithm which was introduced recently 161. The cc algorithm keeps the coverage, 
that is the concentration of the reactants on the lattice, constant while allowing the 
adsorption rate p to vary. In this way, the resolution in p is independent of the lattice 
size. 

Given the values for the reaction probability r and a target coverage of the lattice 
by monomers x i , ,  we first decide whether to execute a reaction (with probability i, 
equation (2)), or an adsorption event (with probability 1 - i). Reaction events proceed 
as usual. The difference between the conventional simulation algorithm and cc is in 
the adsorption step. If xB < x i ,  an adsorption of a monomer B takes place, otherwise 
one attempts to adsorb an A2 dimer. The number of B adsorptions and the total number 
of adsorption attempts is recorded and the monomer adsorption probability p is 
computed as their ratio. Because the convergence of p can be quite slow, a moving 
average provides with the best numerical estimate of p and of its error. 

The cc algorithm was originally conceived to simulate the metastable states of the 
system near the first-order transition. Indeed, starting simulations with an empty lattice 
one can see the typical van der Waals loop of the metastable states. We have discovered 
that by starting simulations with a lattice half-full with monomers and half-empty, the 
system collapses to the first-order transition line. This is similar to the integration of 
dynamic mean-field rate equations. Also there the system evolves to the metastable 
states or to the first-order transition line depending on analogous initial conditions [ 6 ] .  

Our simulations were run on a Parsytec Supercluster, consisting of 128 T800 trans. 
puters with 4 Mbyte DRAM each. To obtain a phase diagram for a given reaction 

transputers, each with a different target coverage xi . .  The simulations were run on a 
300x 300 lattice up to times f = 10'. The CPU time required by each transputer depends 
on the concentration of empty sites (in one unit time there is an average of one 
adsorption attempt per empty site), it varied between 20 and 40 h. 

In figure 1 we present results of the cc simulation for a reaction probability r = 0.1. 
Shown is the concentration of monomers xB as a function of the monomer adsorption 
probability p. The loop of metastable and unstable states (indicated by the thin curve) 
is clearly resolved from the stable reactive states and the first-order transition (thick 
curve). The positions of the spinodal point S' and of the second-order trnsition point 
are hard to locate accurately. We estimate the probability at S' by fixing x i  as close 

mnch !a:ge; :hail N = :/(ApxE) = :o 000 is iieeded io ies0:ve the biEeieiiies iii p.  =iii 
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Figure 1. Steady state behaviour of the ZCB model at r =  0.1. The open circler denote the 
cc simulation results, error bar5 are indicated whenever the error is larger than their 
diameter. The solid curves are drawn to guide the eye. The thick pan denotes stable states 
and the thin pan the loop of metastable and unstable states. The secand-order transition 
point lies outside the range of the plot. 

to 1 as possible. Likewise, the second-order transition probability is estimated by fixing 
xB as close to 0 as possible. 

Our data for xB = 0.001 indicate that the second-order transition at r = 0.1 is at 
p = 0.2527 f 0.0002. The first-order transition is at p = 0.263 12 f 0.00004. Thus, the 
reactive region has a width Ap=O.OI. However, the concentration of empty sites is 
extremely low at a wide region around the second order transition point. It is a mere 
0.003 at p as high as 0.261. Therefore, although Ap is relatively large, the product x,Ap 
is still small and enormous lattices would be required to see the reactive states with 
the conventional stimulation algorithm. 

For smaller values of r, increasing amounts of time are required for the convergence 
of p and it is harder to obtain high quality data. Nevertheless, using the cc technique 
we were able to establish that there exists a reactive phase at r=0.05 with a width 
Ap > 0.002 (the second-order transition estimate was obtained from xB = 0.01). We 
were also able to observe several reactive states at r=0.01 hut made no attempt to 
establish the width of the reactive phase. 

Following Dickman [7], we generalize his mean-field pair-approximation for the 
ZGB model to include finite reaction rates. The method is fully described in [7] and 
we use similar notation. In this technique, one writes down equations for the evolution 
of the concentration of all possible pair combinations. These concentrations we denote 
by xu where the indices i and j are A, B, or E, depending on whether we have an A 
or a B particle or an empty site, respectively. The concentrations add up to unity. 
Zv xu= 1, and the concentrations of j-sites is given by x,=f(x,+Z.,x,). 

In the adsorption-limited case originally studied by Dickman there are seven 
different processes that one must consider. These processes consist of an adsorption, 
that may (or may not) be followed by immediate reaction events. The case of finite 
reaction rate is much simpler, because since reaction is no longer instantaneous, 
adsorption and reaction events are considered separately. We now have to keep track 
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of only three different processes; the adsorption of a monomer (BJ), the adsorption 
of a dimer (Ad) ,  and the reaction and desorption of a pair (AB?). 

Consider for example the process BJ. In the adsorption-limited case this is possible 
only if the B particle lands on an empty site which is not surrounded by A particles 
(otherwise an immediate reaction follows and the B particle is removed from the 
lattice). The rate of this process is px,(l - x ~ ~ / ~ x ~ ) ~ .  In the case of finite r, one does 
not need to worry about the neighbours of the vacancy. The adsorbed B particle 
remains on the lattice for a finite amount of time regardless of its neighbours and the 
rate is spx,. Thus, also the rates of the different processes in the case of finite r are 
simpler than in the adsorption-limited case. 

Whenever one of the three relevant processes takes place there is a change in the 
number of particle pairs v, whose average, ANg,  can be computed in terms of the 
various concentrations (see [7] for details). In this fashion, one obtains the pair- 
approximation mean-field equations 

where R'*' is the rate of process k The expressions for the rates and for AN:' are 
presented in table 1. Notice that no column is included for AB pairs. The xAB 
concentration is determined from Z,, x,, = 1. 

Table 1. Rates and changes in pair numbers in the mean-field pair approximation 

hocessRale AN,, AN" AN,, A NEA 

XEA -4 - 4 p - 9  

Our mean-field results are summarized in figures 2 and 3. In figure 2, we plot the 
phase diagram for r =0.1. Notice the strong similarity to the simulation results of 
figure 1. To plot figure 2, we have integrated equations (3) numerically. By starting 
with different initial conditions for the various pair concentrations the equations 
converge to the different branches of the phase diagram [7,9]. However, we were not 
able to find a way to obtain the unstable branch of the loop SS'. 

In figure 3 we plot the values of the probability p at the second- and first-order 
transition and at the spinodal point S as a function of r. There is a general agreement 
with simulation results and a reactive phase persists down to r = 0. 

Near r = 1, there is good agreement with the results of Dickman [7]. For small r, 
the width of the reactive phase is largely exaggerated (it is 0.07 compared with 0.01 
at r = 0.1). Also, the transition point at r = 0 differs from the exact value of p = 0.2. 
The CTR mean-field predictions are much more satisfactory near r=O.  The reason is 
that they base their approach on the number of isolated active sites. It is known that 
using this parameter the second-order transition can be mapped into its universality 
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Figure 3. Phase diagram ofthe zoe model far general reaction rates based an the mean-field 
pair approximation. The first-order (top) and second-order (bottom) transition lines are 
shown as thick curves. The Spinodal line is denoted by the thin curve. 

class of Reggeon field theory [lo], while other coverage concentrations are irrelevant 
to this mapping. In our approach, the concentration of isolated empty sites is 
xe(l - ~ , / x e ) ~ ,  which is only an approximation. On the other hand, our approximation 
has themerit of being self-contained and not resorting to externally adjusted parameters. 
In this sense, it is complementary to the CTR approach; together they make a strong 
mean-field argument against a tricritical point. 

We have shown compelling evidence against the existence of a tricritical point in 
the ZGB model with finite reaction rates, both theoretical and numerical. Among our 
most important conclusions is the fact that on a finite lattice the adsorption probability 
cannot be resolved to arbitrary accuracy. The constant coverage simulation algorithm 
neatly overcomes this problem. 
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